Chapter 7

Assimilation Under Nonideal
Conditions

In this Chapter, we present the results from a series of synthetic experiments under nonideal
assimilation conditions. By nonideal conditions we generally mean that we use different
inputs or parameters for the generation of the (synthetic) true fields and for the estimation
algorithm. In contrast to the ideal experiments of Chapter 6, nonideal conditions allow us
to subject the assimilation algorithm to harder and more realistic tests.

It is important to note that under nonideal conditions, the assimilation algorithm is not
operating optimally in the strict sense of the word. Even in the ideal cases of Chapter 6, the
nonlinearities in the hydrologic model and in the measurement equation lead to distortions
in the normality of the error distribution functions, thus limiting our chances to conduct a
fully optimal assimilation. In the nonideal scenarios, however, we explicitly specify wrong
error models, which is what we do involuntarily in any field application. The resulting
estimation procedure must therefore be suboptimal.

This argument appears to be contradicting our initial goal to develop a truly optimal
assimilation algorithm. If the algorithm will always be suboptimal, why not use a simple
and fast scheme like Optimal Interpolation right away? But recall that Optimal Interpola-
tion is not optimal even in the ideal linear case unless we manage to come up with the exact
(time-dependent) state error covariances at each update, which is quite impossible in prac-
tice. In contrast, the representer algorithm only requires the covariances of the uncertain
parameters, which are much easier to specify. By using the representer algorithm, which is
truly optimal in the ideal linear case, we will arguably get estimates that are much closer
to the truth.

In the following experiments, we address three topics which are of major importance for
the development of an operational soil moisture data assimilation system. First, we inves-
tigate the quality of the estimates when multiple assimilation windows of variable length
are used (Section 7.1). This also raises the question of how we can reinitialize the varia-
tional algorithm in subsequent assimilation windows. Second, we assess the performance
of the estimation when the observed precipitation data are withheld in the assimilation
(Section 7.2). Finally, we investigate the influence of the soil hydraulic parameters (Sec-
tion 7.3). The computational requirements of the assimilation experiments are discussed in
Chapter 8.
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7.1 Multiple Assimilation Windows

Maybe the biggest advantage of the variational method over sequential techniques is the
implicit and thus cheap propagation of the error covariances. But in an operational setup,
this is also a disadvantage. If we want to use the variational method operationally, we have
to choose appropriate assimilation windows and, most importantly, we have to reinitialize
these windows repeatedly. In particular, we need to calculate the posterior state error
covariance at the final time of the assimilation window such that we can use it as the prior
initial condition covariance for the subsequent window. Unless we can exactly compute
the posterior state error covariance, we are likely to end up with a suboptimal algorithm.
Unfortunately, the cost of providing accurate posterior state error covariances is prohibitive,
even if we are only interested in the posterior covariances at the final time.

In practice, however, this does not necessarily mean that we are going to do very poorly
even if we cannot reinitialize the assimilation windows optimally. Since the exact error
covariances are implicitly propagated in the variational method, a suboptimally specified
initial error covariance may evolve into the optimal error covariance after some time. This
means that we should specify the assimilation window such that the observation time is
near the end of the window. The wrongly specified initial error covariance will then be
implicitly propagated for some time, and the error introduced at the initial time will have
less impact.

This is also how we would want to proceed from a practical point of view. As soon as
a brightness image becomes available, we would like to improve our estimate of the current
soil moisture conditions in order to issue a forecast. We would then specify an assimilation
window that starts some time in the past and ends at the current time. Of course we are
not limited to having just one observation time within the assimilation window. Ideally,
we would like to assimilate many past observations, although in practice we are certainly
limited by the computational burden that this entails.

Since soil moisture variability is foremost governed by rain, it appears to make sense
to take the precipitation history into account when choosing the assimilation windows. As
strong rain events tend to wipe out the soil moisture variability at least near the surface,
a natural choice is to use assimilation windows that coincide roughly with the interstorm
periods. This should also make it easier to estimate the initial saturation.

7.1.1 Experiment Design

We now present the results of three experiments which differ in the choice of the assimilation
windows covering the two-week experiment period. The temporal setup is illustrated in
Figure 6.2. In experiment A, we use three assimilation windows that roughly coincide
with the interstorm periods. In the other two experiments, we cut the two-week period
into twelve short assimilation windows, each of which contains one observation time. For
experiment B, we choose the assimilation windows such that the observation time is always
at the end of the window. In experiment C, the assimilation windows are chosen such
that the observation time is at the beginning of the window, with the exception of the
first window. As discussed above, experiment B is the setup we prefer on theoretical and
practical grounds.

All three experiments are based on Reference Experiment II, that is all inputs are the
same unless mentioned otherwise. The reinitialization of the assimilation windows is done in
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an intentionally simple and ad hoc fashion. At the beginning of each assimilation window,
we use the state estimate at the final time of the previous assimilation window to derive the
prior mean of the initial condition parameters as well as the shape of the initial saturation
profile. For the prior covariance of the initial error we use a scaled version of the initial
condition covariance of Reference Experiment II. In particular, the correlation length is
always 50km, regardless of the evolution of the system. The scaling of the covariance was
found necessary to ensure convergence. Using the initial condition uncertainty of Reference
Experiment II for the now shorter assimilation windows appears to lead to poor conditioning
of the representer matrix, and consequently convergence could not always be achieved.

We scale the initial condition variance with a factor depending on the length of the
assimilation window, or equivalently, the number of observation times within the window.
Moreover, the scaling factor also depends on the number of the assimilation window. Ear-
lier windows have a relatively higher initial condition variance. In particular, in the first
experiment the three windows contain (in order) 5, 3, and 4 out of 12 observation times,
and we scale the initial condition covariance of the three windows with 0.63, 0.19, and 0.17,
respectively. In the other two experiments, each window contains exactly one observation
time, and we scale the initial covariance of Reference Experiment II with 0.5/n,,, where
ny = 1...12 indicates the number of the assimilation window. For example, the initial
condition covariance of the second assimilation window is 0.25 times the initial condition
covariance of Reference Experiment II.

7.1.2 Estimation of the True Fields

Figure 7.1 shows the area average root-mean-square errors (rmse) of the estimated top node
saturation for the three experiments with three and twelve assimilation windows, together
with the rmse of Reference Experiment II. For experiment A, the time and area average top
node saturation error is 3%, and for experiments B and C the errors are 3.2% and 3.8%,
respectively. These numbers compare to an error of 2.9% in Reference Experiment II. As
expected, the area average error increases as the number of assimilation windows increases.
With each additional assimilation window we introduce more approximations by naively
reinitializing the initial saturation covariance.

Certainly the most interesting result, however, is the difference in the errors of ex-
periments B and C. This difference illustrates the impact of the implicit error covariance
propagation in the variational scheme. In experiment B, the choice of the assimilation
windows lets the initial error covariance evolve dynamically for almost 24 hours before the
observation time. In experiment C, by contrast, the poorly specified initial error covariance
is propagated for only a couple of hours before the observation time. The update therefore
relies on a crude approximation of the error covariance, which results in poorer estimates.
Note that experiment C corresponds closely to an Optimal Interpolation scheme, in which
the error covariances are not propagated. In summary, the estimates for Reference Experi-
ment IT and for experiments A and B are very similar. This suggests that the suboptimality
introduced by the naive reinitialization is not severe, provided the assimilation windows are
chosen such that the initial error covariance can evolve for at least one day.

7.1.3 Assessing the Optimality of the Estimates

We can further examine the degree of suboptimality by looking at the value of the reduced
objective function. Figure 7.2 shows the reduced objective function after convergence for
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Figure 7.1: Area average errors for multiple assimilation windows. The errors in the estimated top node saturation are shown for
Reference Experiment IT (Figure 6.12) and the three experiments with shorter assimilation windows. The errors are in the root-mean-
square sense with respect to the (synthetic) true solution. The prior root-mean-square error (rmse) is shown in Figure 6.12. In the
legend we also indicate the temporal average of the area average rmse. Note that the soil moisture errors are in terms of saturation.
The coarsely dotted vertical lines A delimit the three assimilation windows of the first experiment. Likewise, the more finely dotted
vertical lines B and C delimit the twelve assimilation windows of the other two experiments. The observation times are indicated with

circles. For experiment B the observation times are always at the end of the window, whereas for experiment C the observation times
are at the beginning of the window.
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Figure 7.2: Objective function for multiple assimilation windows. The reduced ob-
jective function after convergence is plotted versus the number of the assimilation
window for experiments A (top), B (middle), and C (bottom). The expected values,
which equal the number of data assimilated in the window, are also shown. The error
bars around the reduced objective are plus/minus one standard deviation, which is
equal to the square-root of twice the number of data assimilated. For experiment A,
the reduced objective function does not necessarily indicate suboptimal assimilation.
Experiments B and C, however, are clearly suboptimal.

133



each assimilation window. We also show the expected value of the reduced objective func-
tion, which equals the number of scalar data that have been assimilated in each window.
The standard deviation of the reduced objective function is indicated with error bars.

For experiment A, the reduced objective function of the three assimilation windows lies
within one standard deviation from the respective expected values. Even though all three
values are above the expected value, the reduced objective function does not necessarily
indicate that the assimilation was suboptimal. For experiment B, eight out of twelve values
of the reduced objective function are more than one standard deviation above the expected
value, and all but one of the values lie above the expected value. This hints at the fact that
the assimilation was not optimal. Clearly, the assimilation of experiment C must have been
suboptimal.

An investigation of the posterior data residuals yields roughly the same results as for
Reference Experiment II. The residuals are white in time and the hypothesis of a normal
distribution cannot be rejected in almost all cases. For experiments A and B, the residuals
show no obvious spatial patterns. Only the residuals of experiment C exhibit a weak spatial
structure (not shown). In summary, using shorter assimilation windows and a relatively
naive reinitialization does not appear to have a significant negative effect on the optimality
of the algorithm, provided the assimilation windows are chosen such as to allow adequate
evolution of the error covariance before observation times.

Finally, we would like to note that the computational effort for experiments A, B, and C
is substantially smaller than for Reference Experiment II. For a more detailed discussion
please turn to Section 8.1.3.

7.2 Assimilation without Precipitation Data

Of all model inputs, precipitation is the one parameter which dominates soil moisture
conditions. At the same time, precipitation is also the input associated with the highest
uncertainty. Precipitation observations from rain gauges are point measurements, and the
interpolation to larger areas is notoriously ill understood. On the other hand, large-scale
precipitation measurements from radar sensors are equally imprecise. The quality of the
soil moisture estimates stands and falls with the accuracy of the large-scale precipitation
data. It is therefore desirable to take a closer look at the sensitivity of the assimilation
algorithm to the precipitation inputs.

7.2.1 Experiment Design

We now present the results of an experiment where the precipitation data are withheld
from the assimilation. The experiment is based on Reference Experiment I (Section 6.1),
and all inputs are the same unless otherwise mentioned. For this experiment, instead of
supplying the observed precipitation time series to the assimilation algorithm, we specify
zero precipitation throughout the two-week period. In order to compensate for the lack of
precipitation in the assimilation, we specify certain times at which the model error in the
upper moisture boundary condition has a very high variance. The times at which such model
error occurs are chosen to be times at which significant area average precipitation has been
observed. Such times can be regarded as precipitation indicators. This is a realistic, albeit
extreme, scenario, because it is fairly easy to detect whether or not there is precipitation,
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Figure 7.3: Area average errors when precipitation is withheld. The errors in the top
node saturation of the estimate, the prior, and the estimate of Reference Experiment I
(Figure 6.4) are shown. The errors are in the root-mean-square sense with respect
to the (synthetic) true solution. In the legend we also indicate the temporal mean of
the area average rmse. Note that the soil moisture errors are in terms of saturation
(see Figure 6.4). Even when quantitative precipitation data are withheld entirely, the
algorithm can estimate soil moisture to good accuracy.

but it is rather difficult to observe the rain event quantitatively. In practice, one would of
course use whatever quantitative precipitation information is available.

Note that the intermittent model error is nonstationary, and in practice we then have
to use a white noise error model to make the noise update computationally feasible (Sec-
tion 4.8). When precipitation is indicated, we set the spatially uniform standard deviation
of the model error in the moisture flux boundary condition equal to 86.4mm/d, which is a
typical area average rain rate at 15msin resolution. This is the case for 70 out of 1280 time
steps. At all other times, the white component of the model error has zero variance.

Note that we did not tune the error model to improve the performance of the estimation
algorithm. Moreover, the above error model is of course not the only choice. Many other
error models can be thought up to compensate for the lack of precipitation data in the
assimilation. For example, the model error variance could be horizontally distributed, which
may better capture the strong gradient in rainfall across the domain. Also note that with
the above error model, “negative precipitation” could result from the estimation, that is
the model error could lead to unrealistically high evapotranspiration rates. To prevent this
from happening, the model error could be formulated from the start with a logarithmic
transform.
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7.2.2 Estimation of the True Fields

Figure 7.3 shows the area average top node saturation errors with respect to the (synthetic)
true fields when quantitative precipitation data are withheld from the assimilation. For
comparison, we also show the best estimate of the ideal assimilation run of Section 6.1
(Figure 6.4). Even when all quantitative precipitation information is withheld from the
assimilation, we can estimate the top node saturation to within 3.4% in saturation terms,
compared to 1.4% under ideal conditions. Unlike in the case of the ideal Reference Ex-
periment I (Figure 6.4), the prior error in this experiment increases over the two-week
assimilation window. Since the prior solution does not contain any rain events, the prior
saturation is governed by a single, two-week long drydown. For longer assimilation windows,
the prior saturation error reaches a plateau.

Around precipitation events, the average error in the top node saturation increases some-
what. This follows naturally from the fact that we cannot resolve the temporal structure
of the events from brightness data that are available only once daily. To illustrate this
point, we plot in Figure 7.4 the observed precipitation and the corresponding model error
estimates for three different pixels during the three major precipitation events of the two-
week assimilation window. The three pixels shown in Figure 7.4 are in the southwestern
corner (pixel 100), the center (pixel 398), and the northeastern corner (pixel 412) of the
domain. For the three pixels, the cumulative observed precipitation over the entire two-
week period is 1.6cm, 1.5¢m, and 4cm, respectively. The cumulative model error estimates
are 1.6cm, 0.9cm, and 2.8cm. The area average cumulative precipitation is 2.8c¢m, and the
corresponding area average cumulative model error estimate is 1.6¢m.

By using the precipitation indicators we naturally get the overall timing of the storms
right. In addition, we also get reasonable estimates of the volume of the storms from the
brightness observations. It is clear, however, that the detailed temporal structure of the
storms eludes us. Moreover, the model error estimates are generally lower than the observed
precipitation. To understand this, recall that we assimilate brightness data only once a day.
In this case, the nonlinearities in the infiltration and exfiltration processes defy a more
accurate estimate of the volume of the storms. Since the true precipitation is heavier than
the model error estimates, the soil actually gets wetter than estimated, but this also leads to
stronger evaporation and possibly runoff. If the observations are available only some time
after the storm, the difference between the true and the estimated soil saturation at the
observation time is then much smaller than the difference between the model error estimate
and the observed precipitation at the time of the storm, and we cannot distinguish between
the two scenarios.

Note that the increase in the model error estimate with time during blocks of nonzero
estimates is a direct consequence of the whiteness of the model error. If the temporal
correlation of the model error is white, the model error estimates are in essence scaled
version of the adjoint variables. The adjoint variables, in turn, decay backwards in time, as
can be seen for example in Figure 6.10.

7.2.3 Reduced Objective Function and Computational Effort

Figure 7.5 shows the reduced objective function during the iteration. After convergence,
the reduced objective function is 10,907, which is not compatible with an expected value of
6,144. Obviously, our choice of error model does not capture the real error introduced by
withholding all quantitative precipitation information. In fact, the above experiment is only
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Figure 7.4: Model error estimates when precipitation is withheld. Model error estimates for three different pixels during the three
major precipitation events. The pixels 100, 398, and 412 are located in the southwestern corner, the center, and the northeastern corner
of the domain, respectively. By using precipitation indicators, we supply the overall timing of the storms to the estimation algorithm.
By assimilating brightness observations, we get reasonable estimates of the volume of the storms. To better compare the model error
estimates to the observed precipitation, which is defined as a positive quantity, we plot the negative of the model error estimate.
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Figure 7.5: Objective function versus iteration number when precipitation is withheld.
The reduced objective function after convergence is 10,907. The number of data points
is 6144, which is also the expected value of the reduced objective function. Obviously,
the estimates do not pass the hypothesis test on the value of the reduced objective
function. The values of k.4 indicate the number of linear combinations of representer
functions that needed to be evaluated during the conjugate gradient iteration of the
indirect representer approach (Chapter 8).
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Figure 7.6: Sample mean of the posterior data residuals when precipitation is with-
held. The mean residuals for the twelve images that have been assimilated are shown
together with the 95% confidence intervals. Very obviously, the mean value of the
posterior data residuals differs from zero.

a crude approximation of a much more sophisticated optimal assimilation procedure. Ideally,
if the precipitation inputs are considered very uncertain, the true precipitation should be
estimated by assimilating the rain data into a suitable model of precipitation processes.
In the future, the current soil moisture assimilation algorithm may be augmented to also
estimate precipitation.

Interestingly, the computational effort for this experiment is only about two thirds of
the computational burden of Reference Experiment I. This stems from the fact that we
changed the prior statistics in order to compensate for the lack of precipitation data. For a
more detailed discussion see Section 8.1.2.

7.2.4 Posterior Data Residuals

A closer look at the data residuals sheds more light on the suboptimal nature of the as-
similation in this experiment. We first examine the mean of the residuals (Figure 7.6).
Unsurprisingly, the mean of all residuals with a 95% confidence interval is —0.43 + 0.12K,
which does not include zero. Similarly, none of the individual residual brightness images
has a mean whose 95% confidence interval includes zero. Figure 7.7 shows the standardized
posterior data residuals for each of the twelve brightness images that have been assimilated.
Obviously, some of the residual images show spatial structure. This is especially true for
observation time 10, which happens to be during a major rain event in the northern half of
the domain.

Figure 7.8 shows the sample cumulative distribution function (cdf) for two representative
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Figure 7.7: Standardized posterior data residuals when precipitation is withheld for the
twelve brightness images that have been assimilated. The residuals of each image are
standardized with the sample mean and standard deviation of the corresponding observation
time. Some of the residual images show an obvious spatial structure, which indicates that
the estimation algorithm does not work optimally.
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Figure 7.8: Sample cumulative distribution function (cdf) of the standardized pos-
terior data residuals when precipitation is withheld for two of the twelve brightness
images that have been assimilated (solid line). Also shown is the theoretical cumu-
lative distribution function of the standard normal distribution (dashed line). For
observation time 2 (upper panel), the residuals are close to normal and pass the
Kolmogorov-Smirnov test for normality at a significance level of 5%. For observation
time 10, however, the sample cdf is far from normal. The same is true for four other
observation times.
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residual images. For seven of the twelve observation times, the sample cdf is close to normal
and passes the Kolmogorov-Smirnov test at a significance level of 5%. A representative
example is observation time 2, which is shown in the upper panel of Figure 7.8. The lower
panel shows an example of the five observation times for which the residuals are far from
normally distributed. The examination of the brightness residuals thus corroborates that
the assimilation was not optimal.

7.3 Assimilation with Poor Soil Hydraulic Parameters

Inevitably, the success of the estimation procedure depends on the quality of the model
parameters that need to be specified. Many of these inputs, in particular the soil hydraulic
parameters, are rather poorly known. Ideally, one would of course estimate the uncertain
model parameters. Even though the data assimilation algorithm formulated in Chapter 2 is
very general and provides for the estimation of model parameters, we have not implemented
this feature in the synthetic experiments of this thesis for two reasons. First, the state
estimation problem as implemented is already very complicated, and it is certainly wise to
be conservative when specifying the uncertain inputs in a first application. Second, any
hydrologic model that is to be used in an operational assimilation package had better be
well calibrated. Estimating already calibrated parameters may make sense when one tries to
improve the stability of the assimilation algorithm, but it is unlikely to be the most pressing
problem in an operational context. Moreover, the parameter estimate adds significantly to
the computational burden.

7.3.1 Experiment Design

Nevertheless, it is important to understand the sensitivity of the assimilation algorithm to
poorly or wrongly specified model parameters. To address this issue, we have conducted a
synthetic experiment in which we use different soil hydraulic parameters for the generation
of the (synthetic) true fields and for the estimation. The setup of the experiment, including
the (synthetic) true solution, is identical to Reference Experiment I of Section 6.1, with one
exception. For the estimation, we change the soil hydraulic parameters of the land surface
model by assigning the values from soil texture classes that have been randomly sampled
from the existing soil texture classes. The resulting soil texture map is shown in Figure 7.9.
Compared to the original map (Figure 5.3), 361 out of the 512 pixels differ in their texture
classes.

We choose to randomly sample from existing soil texture classes for two reasons. First,
the procedure guarantees that we only work with calibrated and tested input parameters.
Unfortunately, the stability of the Richards’ equation solver is fairly sensitive to the soil
hydraulic parameters. Moreover, the scenario is realistic because in general we will have
a good idea what soil texture classes occur in any given area, even though we may not
accurately know their spatial distribution.

7.3.2 Estimation of the True Fields

Figure 7.10 shows the area average errors in the top node saturation of the prior and the
estimate for the texture sensitivity experiment. Also shown is the error of the estimate
from the ideal setup of Reference Experiment I (Figure 6.4). Even for wrongly specified soil
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Figure 7.9: Soil texture classes for the texture sensitivity experiment. This “wrong”
soil texture map has been derived by randomly subsampling from the original soil
texture map (Figure 5.3). Compared to the original map, 361 out of the 512 pixels
differ in their texture classes.

hydraulic parameters, the assimilation algorithm manages to estimate soil moisture satis-
factorily. During precipitation events, however, the error increases. This is directly related
to the fact that we supply wrong soil hydraulic parameters to the assimilation algorithm.
Most of the infiltration happens during rain events, and exfiltration via evapotranspiration
is highest just after the events. But with wrong soil hydraulic parameters, we cannot model
the (synthetic) true moisture fronts accurately. This leads to higher errors during and after
rain events.

Note that using the wrong soil hydraulic parameters leads to a prior error (Figure 7.10)
which is only slightly higher than the error of Reference Experiment I (Figure 6.4), in which
the true texture classes have been used. In Reference Experiment I, we already assume a
very big uncertainty in the initial condition, and the prior rmse is about as big as it can be
under the conditions of the experiment. Since we already know next to nothing about the
initial condition distribution, the prior error does not increase much if we use the wrong
soil hydraulic parameters.

7.3.3 Assessing the Optimality of the Estimates

Finally, Figure 7.11 shows the reduced objective function for the texture sensitivity experi-
ment. The converged value of the reduced objective function is 7023, which is almost eight
standard deviations above the expected value. This follows naturally from the fact that
we use the same error statistics for the generation of the (synthetic) true solution and for
the estimation, even though we changed the soil hydraulic parameters in the assimilation.
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Figure 7.10: Area average errors for the texture sensitivity experiment. The errors
in the top node saturation of the estimate, the prior, and the estimate of Reference
Experiment I (Figure 6.4) are shown. The errors are in the root-mean-square sense
with respect to the (synthetic) true solution. In the legend we also indicate the
temporal mean of the area average rmse. Note that the soil moisture errors are in
terms of saturation.
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Figure 7.11: Objective function versus iteration number for the texture sensitivity
experiment. The reduced objective function after convergence is 7023. The number of
data points is 6144, which is also the expected value of the reduced objective function.
Obviously, the estimates do not pass the hypothesis test on the value of the reduced
objective function. The values of k., indicate the number of linear combinations
of representer functions that needed to be evaluated during the conjugate gradient

iteration of the indirect representer approach (Chapter 8).
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The change in model parameters leads to additional errors in the model, which are not
adequately described with the original error statistics. This confirms that the assimilation
is not operating optimally in this nonideal case.

On the other hand, a close look at the posterior data residuals yields qualitatively the
same results as for Reference Experiment I (Figures 6.7, 6.8, and 6.9). The raw mean
for all residuals with a 95% confidence interval is 0.13 + 0.13K. For all but one of the
residual brightness images we find a mean whose 95% confidence interval includes zero.
There is no indication that the residuals are correlated in either space or time. Moreover,
the sample cumulative distribution function for all but one of the residual images passes
the Kolmogorov-Smirnov test for normality. In summary, this indicates that the estimation
process is at least close to optimal.
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